

BM IHP NM Jeff L. 101920

673 N. Bardstown Rd Mount Washington, KY, 40047, US

Certificate of Analysis

Oct 23, 2020 |

PASSED Page 1 of 3

PRODUCT IMAGE SAFETY RESULTS

Heavy Metals PASSED

Microbials

PASSED

Residuals Solvents

PASSED

Water Activity

Moisture

MISC.

NOT TESTED

CANNABINOID RESULTS

Total THC 0.285%

Total CBD 9.045%

Total Cannabinoids 10.878%

PASSED

Analyzed By Weight Extraction date LOD(ppm) Extracted By NA NA

Analysis Method -SOP,T.40.013 Batch Date : Analytical Batch -NA Instrument Used: Running On :

Reviewed On - 10/23/20 10:09:50

This mith-desibit is not limited to hair, insects, feces, packing ng contaminants, and memiliactar and 69-directors. An SH-2B-T Steteo Microscope is une for imperition.

	CONTRACTOR STATE		-						$\overline{}$	
D9-THC	THCA	CBD	CBDA	D8-THC	THCV	CBN	CBDV	CBC	CBG	CBGA
0.121%	0,188%	1.459%	8.650%	ND	ND	ND	ND	0.232%	0.052%	0.176%
1,210 mg/g	1.880 mg/g	14.590 mg/g	86.500 mg/g	ND	ND	ND	ND	2.320 mg/g	0.520 mg/g	1.760 mg/g
0.0001	0.001	0.0001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
%	%	%	%	%	%	%	%	%	%	%
	0.121% 1.210 mg/g 0.0001	0.121% 0.188% 1.210 1.880 mg/g mg/g 0.0001 0.001	0.121% 0.188% 1.459% 1.210 1.880 14.590 mg/g mg/g mg/g 0.0001 0.001 0.0001	0.121% 0.188% 1.459% 8.650% 1.210 1.880 14.590 86.500 mg/g mg/g mg/g mg/g 0.0001 0.0001 0.0001 0.001	0.121% 0.188% 1.459% 8.650% ND 1.210 1.880 14,590 86.500 mg/g mg/g mg/g mg/g ND 0.0001 0.001 0.001 0.001 0.001	0.121% 0.188% 1.459% 8.650% ND ND 1.210 1.880 14.590 86.500 ND ND mg/g mg/g mg/g ND ND 0.0001 0.001 0.001 0.001 0.001	0.121% 0.188% 1.459% 8.650% ND ND ND 1.210 1.880 14.590 86,500 ND ND ND mg/g mg/g mg/g ND ND ND 0.0001 0.001 0.001 0.001 0.001 0.001	0.121% 0.188% 1.459% 8.650% ND ND ND ND 1.210 1.880 14.590 86.500 ND ND ND ND mg/g mg/g mg/g ND ND ND ND 0.0001 0.001 0.001 0.001 0.001 0.001 0.001	0.121% 0.188% 1.459% 8.650% ND ND ND ND 0.232% 1.210 1.880 14.590 86.50% ND MD ND 0.001	0.121% 0.188% 1.459% 8.650% ND ND ND ND 0.232% 0.052% 1.210 1.880 14.590 86.500 ND ND ND ND ND ND ND MD MD MD MD MD MD MD MD MD 0.001

Cannabinoid Profile Test

Analyzed by Weight		Extraction date :	Extracted By :		
19	5.2074g	NA	NA		
Analysis Method -SOP.1	.40.020, SOP.T.30.050	Reviewed On - 10/22/20 11:08:21	Batch Date: 10/21/20 16:08:54		
Analytical Batch -MO00	1310POT Instrument	Used: HPLC Potency Analyzer Running	g On :		
Reagent	Dilution	Consums.	ID		

Full spectrum cannabinoid analysis utilizing high Performance Liquid Chromatography with UV detection (HPLC-UV), (Method: SOP.T. 30.050 for sample prep and Shimadry High Sensitivity Method: SOP.T. 40.020 for analysis, LOQ for all cannabinoids is 1 mg/l), Measurement of Unicertainty: 2.7%

This report shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. This report is an Paycha Labs certification. The results relate only to the material or product analyzed. Test results are continential unless explicitly waived otherwise. Void after 1 year from test end date. Cannabinoid content of batch material may vary depending on simpling error. IC=In-control QC parameter, RC-Non-controlled QC parameter, NO-Not Detection (IAD-Not Analyzed, primi-Parts Per Million, pit=Parts Per Billion, Limit of Detection (IAD-Not Analyzed, primi-Parts Per Million, pit=Parts Per Billion, Limit of Detection (IAD-Not Analyzed, primi-Parts Per Million, pit=Parts Per Billion, Limit of Detection (IAD-Not Analyzed, primi-Parts Per Billion, Limit of Detectio

David Greene

Lab Director

State License # 19-05-02P ISO Accreditation # 17025:2017 #97164

10/23/2020

Signed On

673 N. Bardstown Rd Mount Washington, KY, 40047, US

BM IHP NM Jeff L. 101920

PASSED

Page 2 of 3

٦-
۲,
П
21

Pesticides

Certificate of Analysis

PASSED

Result

Action Level

Pesticides	LOD	Units	Action Level	Result
ABAMECTIN B1A	0.020	ppm	0.5	ND
ACEPHATE	0.010	ppm	0.5	ND
ACEQUINOCYL	0.02	ppm	2	ND
ACETAMIPRID	0.010	ppm	0.2	ND
ALDICARB	0.020	ppm	0.4	ND
AZOXYSTROBIN	0.010	ppm	0.2	ND
BIFENAZATE	0.010	ppm	0.2	ND
BIFENTHRIN	0.010	ppm	0.2	ND
BOSCALID	0.005	ppm	0.4	ND
CARBARYL	0.010	ppm	0.2	ND
CARBOFURAN	0.010	ppm	0.2	ND
HLORANTRANILIPROLE	0.010	ppm	0.2	ND
HLORPYRIFOS	0.010	ppm	0.2	ND
LOFENTEZINE	0.010	ppm	0.2	ND
OUMAPHOS	0.005	ppm	0.2	ND
YPERMETHRIN	0.010	ppm	1	ND
AMINOZIDE	0.010	ppm	1	ND
DIAZANON	0.010	ppm	0.2	ND
ICHLORVOS	0.050	ppm	0.1	ND
IMETHOATE	0.010	ppm	0.2	ND
IMETHOMORPH	0.005	ppm	0.1	ND
THOPROPHOS	0.010	ppm	0.2	ND
TOFENPROX	0.010	ppm	0.4	ND
TOXAZOLE	0.010	ppm	0.2	ND
ENHEXAMID	0.005	ppm	0.1	ND
ENOXYCARB	0.010	ppm	0.2	ND
ENPYROXIMATE	0.010	ppm	0.4	ND
IPRONIL	0.020	ppm	0.4	ND
LONICAMID	0.010	ppm	1	ND
LUDIOXONIL	0.010	ppm	0.4	ND
EXYTHIAZOX	0.010	ppm	1	ND
MAZALIL	0.010	ppm	0.2	ND
MIDACLOPRID	0.010	ppm	0.4	ND
RESOXIM-METHYL	0.010	ppm	0.4	ND
ALATHION	0.010	ppm	0.2	ND
ETALAXYL	0.010	ppm	0.2	ND
ETHIOCARB	0.010	ppm	0.2	ND
	0.010	ррт	0.6	ND
ETHOMYL	0.010	ppm	0.1	ND
EVINPHOS			0.2	ND
YCLOBUTANIL	0.010	ppm	0.5	ND
ALED	0.010	ppm	1	ND
XAMYL	0.010	ppm	0.4	ND
ACLOBUTRAZOL	0.010	ppm	0.4	ND
ERMETHRINS	0.050	ppin		
HOSMET	0.010	ppm	0.2	ND

PRALLETHRIN	0.050	ppm	0.2	ND
PROPICONAZOLE	0.010	ppm	0.4	ND
PROPOXUR	0.010	ppm	0.2	ND
PYRETHRIN I	0.010	ppm	1	ND
PYRIDABEN	0.005	ppm	0.2	ND
SPINETORAM	0.005	ppm	0.5	ND
SPINOSAD (SPINOSYN A)	0.010	ppm	0.2	ND
SPINOSAD (SPINOSYN D)	0.010	ppm	0.2	ND
SPIROMESIFEN	0.010	ppm	0.2	ND
SPIROTETRAMAT	0.020	ppm	0.2	ND
SPIROXAMINE	0.010	ppm	0.4	ND
TEBUCONAZOLE	0.010	ppm	0.4	ND
THIACLOPRID	0.010	ppm	0.2	ND
THIAMETHOXAM	0.010	ppm	0.5	ND
TRIFLOXYSTROBIN	0.010	ppm	0.2	ND
A Pesticides				PASS

Units

LOD

0		

SED

Analyzed by	Weight	Extraction date	Extracted By
1	19	10/23/20 10:10:00	1
Analysis Method - S	OP.T.30.060, SO	P.T.40.060 ,	
Analytical Batch - N	MO001318PES	Reviewed On-	10/23/20 10:09:50

Analytical Batch - M0001318PES Instrument Used : LCMSMS 8060 P

Running On : Batch Date : 10/23/20 10:10:30

Pesticides

Consums. ID

Pesticide screen is performed using LC-MS which can screen down to below single digit ppb concentrations for regulated Pesticides. Currently we analyze for 57 Pesticides. (Method: SOP.T.30.060 Sample Preparation for Pesticides Analysis via LCMSMS and SOP.T.40.060 Procedure for Pesticide Quantification Using LCMS). *

This report shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. This report is an Kaycha Labs certification. The results relate only to the material or product analyzed. Test results are confidential unless explicitly waived otherwise. Void after 1 year from test end date. Cannabinoid content of batch material may vary depending on sampling error. IC=In-control QC parameter, NC=Non-controlled QC parameter. NLD=Nor Detected. NA=Not Analyzed, ppm=Parts Per Million, ppb=Parts Per Billion. Limit of Detection (LoD) and Limit Of Quantitation (LoQ) are terms used to describe the smallest concentration that can be reliably measured by an analytical procedure. PPD=Reproducibility of two measurements. Action Levels are State determined thresholds for numbal safety for consumption analytic or inhalation. The result >99% are variable based on uncertainty of measurement (UM) for the analyte. The UM error is available from the lab upon request The "Decision Rule" for the pass/fail does not include the UM. The limits are based on E.S. Rule 64-4.310.

David Greene

Lab Director

State License # 19-05-02P ISO Accreditation # 17025:2017 #97164

10/23/2020

Signed On

673 N. Bardstown Rd Mount Washington, KY, 40047, US

Kaycha Labs

BM IHP NM Jeff L. 101920

PASSED

Page 3 of 3

*
ન ા-
1 3
\sim

Running On:

Microbials

Certificate of Analysis

LOD

PASSED

Mycotoxins

PASSED

Analyte ASPERGILLUS_TERREUS_1J2 ASPERGILLUS_NIGER ASPERGILLUS_FUMIGATUS ASPERGILLUS_FLAVUS

SALMONELLA_SPECIFIC_GENE

ESCHERICHIA_COLI_SHIGELLA_SPP Analysis Method -SOP.T.40.043 Analytical Batch -NA Batch Date : Instrument Used:

Analyzed by Weight **Extraction date Extracted By** NA NA NA NA

Microbiological testing for Fungal and Bacterial Identification via Polymerase Chain Reaction (PCR) method consisting of sample DNA amplified via tandem Polymerase Chain Reaction (PCR) as a crude lysate which avoids purification. (Method SOP.T.40.043) If a pathogenic Escherichia Coli, Salmonella, Aspergillus funigatus, Aspergillus finger, or Aspergillus terreus is detected in 1g of a sample, the sample fails the microbiological-impurity testing.

Action Level (PPM)

Result Analyte LOD Units Result 0.02 not present in 1 gram. AFLATOXIN G2 0.001 ND ppm not present in 1 gram. AFLATOXIN G1 0.02 0.001 ND ppm not present in 1 gram. AFLATOXIN B2 0.02 0.001 ppm ND not present in 1 gram. not present in 1 gram. not present in 1 gram. ochratoxin A+ 0.02 ND 0.001 ppm 0.001 ppm

> Analysis Method -SOP.T.30.060, SOP.T.40.060 Analytical Batch - | Reviewed On - 10/23/20 10:26:18 Instrument Used: Running On: Batch Date:

Analyzed by Weight **Extraction date Extracted By**

Aflatoxins B1, B2, G1, G2, and Ochratoxins A testing using LC-MS. (Method. SOP T.30.060 for Sample Preparation and SOP,T40.060 Procedure for Mycotoxins Quantification Using LCMS. LOQ 1.0 ppb). Total Aflatoxins (Aflotoxin B1, B2, G1, G2) must be <20µg/Kg. Ochratoxins must be <20µg/Kg.

Heavy Metals

PASSED

Reagent

110119.52 110119.44 112519 01

110113.50				
Metal	LOD	Unit	Result	Action Level (PPM)
ARSENIC	0.02	ppm	ND	10
CADMIUM	0.02	ppm	ND	4.1
LEAD	0.02	ppm	1.740	10
MERCURY	0.02	ppm	ND	2
Analyzed by	Weight	Extractio	n date	Extracted By
18	0.4849	10/23/20 08	3 10 02	18

Analysis Method -SOP.T.40.050, SOP.T.30.052

Analytical Batch -M0001317HEA | Reviewed On - 10/23/20 10:14:08

Instrument Used: ICP-MS 2030

Running On:

Batch Date: 10/23/20 08:52:00

Heavy Metals screening is performed using ICP-MS (Inductively Coupled Plasma - Mass Spectrometer) which can screen down to below single digit ppb concentrations for regulated heavy metals using Method SOP.T.30.052 Sample Preparation for Heavy Metals Analysis via ICP-MS and SOP.T.40.050 Heavy Metals Analysis via ICP-MS. "Action Limits based on Colorado Regulations."

This report shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. This report is an Kaycha Labs certification. The results relate only to the material or product analyzed. Test results are contined to the control of the product analyzed are contined to both material by vary depending on sampling error. It – In-control QC parameter, NC—Non-controlled QC parameter, ND—Not Detection in Analyzed, ppm—Parts Per Million, ppb—Parts Per Billion, Limit of Detection (LoD) and Limit of Detection (LoD) and

David Greene

Lab Director

State License # 19-05-02P ISO Accreditation # 17025:2017 #97164

10/23/2020

Signed On

CBD Isolate

Sample ID: 2101CSALA4395.1186

Matrix: Other Type: Other Sample Size: 2 units Batch Size: Batch#: 0100010

Produced: 01/18/2021 Collected: 01/20/2021 Received: 01/20/2021 Completed: 01/21/2021

ND

>99.9%

>99.9%

Total THC

Total CBD

Total Cannabinoids

Cannabinoids **Pass**

Testing method:	HPLC-SOP 101
-----------------	--------------

Testing method: HF	PLC-SOP 101				
Analyte	LOD	LOQ	Results	Results	
	mg/g	mg/g	%	mg/g	
CBD	0.18797	1.92917	>99.9	>999	
CBDV	0.38583	1.92917	0.2651	2.6514	
CBC	0.05936	1.92917	ND	ND	
CBDa	0.25722	1.92917	ND	ND	
CBG	0.49466	1.92917	ND	ND	
CBGa	0.23744	1.92917	ND	ND	
CBN	0.11872	1.92917	ND	ND	
THCa	0.10882	1.92917	ND	ND	
THCV	0.37594	1.92917	ND	ND	
Δ8-THC	0.17808	1.92917	ND	ND	
Δ9-ΤΗС	0.1385	1.92917	ND	ND	
Total			>99.9	>999	

Date Tested: 01/21/2021

Total THC = THCa * 0.877 + d9-THC

Total CBD = CBDa * 0.877 + CBD

LOQ = Limit of Quantitation; LOD = Limit of Detection; NT = Not Tested; ND = Not Detected.

If the totals appear >99%, your analytical results show a combined total greater than 100%. Analytically, the results are valid based on compound purity and innate measurement uncertainties.

ISO / IEC 17025:2017 ACCREDITED LABORATORY Accreditation No. 73653

Douglas Duncan Lab Director 01/21/2021

la Milyar

Cecilia Melgar COA Review 01/21/2021

CBD Isolate

Sample ID: 2101CSALA4395.1186

Matrix: Other Type: Other Sample Size: 2 units Batch Size: Batch#: 0100010

Produced: 01/18/2021 Collected: 01/20/2021 Received: 01/20/2021 Completed: 01/21/2021

Residual Solvents Pass

Testing method: HSGCMS-SOP 2	202						
Analyte		LOD	LOQ	Limit	Results	Status	
		μg/g	μg/g	μg/g	μg/g		
1,2-Dichloroethane		0.1524	0.4571	1	ND	Pass	
Acetone		50.0	500.0	5000	ND	Pass	
Acetonitrile	4	4.1	41.0	410	ND	Pass	
Benzene		0.1905	0.6095	1	ND	Pass	
Butane	Ţ	50.0	500.0	5000	ND	Pass	
Chloroform	(0.3048	0.9905	1	ND	Pass	
Ethanol		50.0	500.0	5000	ND	Pass	
Ethyl acetate		50.0	500.0	5000	ND	Pass	
Ethylene Oxide	(0.1524	0.4952	1	ND	Pass	
Ethyl ether		50.0	500.0	5000	ND	Pass	
Heptane		50.0	500.0	5000	ND	Pass	
Isopropyl alcohol		50.0	500.0	5000	ND	Pass	
Methanol	3	30.0	300.0	3000	<loq< td=""><td>Pass</td><td></td></loq<>	Pass	
Methylene chloride	(0.1143	0.381	1	ND	Pass	
Hexane		2.9	29.0	290	ND	Pass	
Pentane		50.0	500.0	5000	<loq< td=""><td>Pass</td><td></td></loq<>	Pass	
Propane	Į.	50.0	500.0	5000	ND	Pass	
Toluene	8	8.9	89.0	890	ND	Pass	
Trichloroethylene	(0.1905	0.6476	1	ND	Pass	
Total xylenes		21.7	217.0	2170	ND	Pass	

Date Tested: 01/21/2021

LOQ = Limit of Quantitation; LOD = Limit of Detection; NT = Not Tested; ND = Not Detected.

LABORATORY Accreditation No. 73653

Douglas Duncan Lab Director 01/21/2021

la Milyar

Cecilia Melgar COA Review 01/21/2021

CERTIFICATE OF ANALYSIS

CBD Isolate

Batch ID:	0100010	Test ID:	T000119537
Туре:	Concentrate	Submitted:	01/19/2021 @ 08:35 AM
Test:	Pesticides	Started:	1/21/2021
Method:	TM17	Reported:	1/22/2021

PESTICIDE RESIDUE

Compound	Dynamic Range (ppb)	Result (ppb)
Acephate	34 - 2325	ND*
Acetamiprid	37 - 2325	ND*
Abamectin	>285	ND*
Azoxystrobin	41 - 2325	ND*
Bifenazate	38 - 2325	ND*
Boscalid	41 - 2325	ND*
Carbaryl	43 - 2325	ND*
Carbofuran	41 - 2325	ND*
Chlorantraniliprole	46 - 2325	ND*
Chlorpyrifos	51 - 2325	ND*
Clofentezine	278 - 2325	ND*
Diazinon	269 - 2325	ND*
Dichlorvos	>291	ND*
Dimethoate	36 - 2325	ND*
E-Fenpyroximate	295 - 2325	ND*
Etofenprox	42 - 2325	ND*
Etoxazole	291 - 2325	ND*
Fenoxycarb	>42	ND*
Fipronil	45 - 2325	ND*
Flonicamid	50 - 2325	ND*
Fludioxonil	>281	ND*
Hexythiazox	44 - 2325	ND*
Imazalil	262 - 2325	ND*
Imidacloprid	39 - 2325	ND*
Kresoxim-methyl	46 - 2325	ND*

Compound	Dynamic Range (ppb)	Result (ppb)
Malathion	270 - 2325	ND*
Metalaxyl	40 - 2325	ND*
Methiocarb	40 - 2325	ND*
Methomyl	42 - 2325	ND*
MGK 264 1	160 - 2325	ND*
MGK 264 2	118 - 2325	ND*
Myclobutanil	39 - 2325	ND*
Naled	47 - 2325	ND*
Oxamyl	38 - 2325	ND*
Paclobutrazol	42 - 2325	ND*
Permethrin	278 - 2325	ND*
Phosmet	42 - 2325	ND*
Prophos	279 - 2325	ND*
Propoxur	40 - 2325	ND*
Pyridaben	283 - 2325	ND*
Spinosad A	29 - 2325	ND*
Spinosad D	81 - 2325	ND*
Spiromesifen	>261	ND*
Spirotetramat	>260	ND*
Spiroxamine 1	19 - 2325	ND*
Spiroxamine 2	23 - 2325	ND*
Tebuconazole	279 - 2325	ND*
Thiacloprid	37 - 2325	ND*
Thiamethoxam	40 - 2325	ND*
Trifloxystrobin	41 - 2325	ND*

N/A

FINAL APPROVAL

Jefor Win

Tyler Wiese 22-Jan-2021 12:13 PM

Den Minton

Ben Minton 22-Jan-2021 7:58 PM

PREPARED BY / DATE

APPROVED BY / DATE

Testing results are based solely upon the sample submitted to Botanacor Laboratories, LLC, in the condition it was received. Botanacor Laboratories, LLC warrants that all analytical work is conducted professionally in accordance with all applicable standard laboratory practices using validated methods. Data was generated using an unbroken chain of comparison to NIST traceable Reference Standards and Certified Reference Materials. This report may not be reproduced, except in full, without the written approval of Botanacor Laboratories, LLC.

^{*} ND = None Detected (Defined by Dynamic Range of the method)

CERTIFICATE OF ANALYSIS

CBD Isolate

Batch ID:	0100010	Test ID:	T000119538
Type:	Concentrate	Submitted:	01/19/2021 @ 08:35 AM
Test:	Metals	Started:	1/20/2021
Method:	TM19	Reported:	1/21/2021

HEAVY METALS

Analyte	Dynamic Range (ppm)	Result (ppm)
Arsenic	0.101 - 10.00	ND
Cadmium	0.097 - 9.69	ND
Mercury	0.097 - 9.70	ND
Lead	0.113 - 11.20	ND

^{*} ND = None Detected (Defined by Dynamic Range of the method)

FINAL APPROVAL

Garmantha Smods

Sam Smith 21-Jan-2021 12:20 PM

Den Miton

Ben Minton 21-Jan-2021 2:28 PM

PREPARED BY / DATE

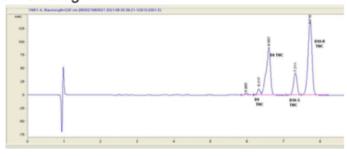
APPROVED BY / DATE

Testing results are based solely upon the sample submitted to Botanacor Laboratories, LLC, in the condition it was received. Botanacor Laboratories, LLC warrants that all analytical work is conducted professionally in accordance with all applicable standard laboratory practices using validated methods. Data was generated using an unbroken chain of comparison to NIST traceable Reference Standards and Certified Reference Materials. This report may not be reproduced, except in full, without the written approval of Botanacor Laboratories, LLC.

Marin Analytics

Analysis Report

Sample 254-063021-284


D10-210627

Sample Submitted: 06-30-2021; Report Date: 06-30-2021


D10-210627

Distillate

Chromatogram

Cannabinoid Profile

Cannabinoid Profile by HPLC

0.20%

Calculated THC Yield

0.00%

Calculated CBD Yield

Cannabinoid	% wt	mg/g
Delta-8-THC	40.96	409.6
THC	0.2	2.0
Delta-10-THC	55.63	556.3
Total Cannabinoids	96.79	967.9
Calculated THC Yield	0.20	2.00
Calculated CBD Yield	0.00	0.00
Coloudated Mandagues THO World	TUO - COTT + TUO	

Calculated Maximum THC Yield = THC + 0.877 * THCA Calculated Maximum CBD Yield = CBD + 0.877 * CBDA

96.79%

Total Cannabinoids

Marin Analytics, LLC

250 Bel Marin Keys Blvd, Suite D4 Novato, CA 94949

415-936-6477 / sarabiancalana1@gmail.com

Sara Bianacalana

Sara Bianacalan Chief Scientist

This sample has been tested by Marin Analytics, LLC using valid testing methodologies and a quality system. Values reported relate only to the sample tested. Marin Analytics, LLC makes no claims as to the efficacy, safety or other risks associated with any detected or non-detected levels of any compounds reported herein. This Certificate shall not be reproduced except in full, without the written approval of Marin Analytics, LLC.